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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.2 Laminar Flow Control

Extending Laminar flow in reality is the delay of boundary layer transition.

This control is obtained by passive, active, or reactive techniques [1]. Passive

techniques, also know as Natural Laminar Flow control (NLF), are categorized as

those means of altering the flow through normal aerodynamic control parameters,

for example:

- pressure-gradient

- wall shaping

- sweep

- angle of attack

- Reynolds number

Active techniques are categorized as those means of altering the flow

through outside applied means, for example:

- wall suction

- heat transfer

A third form of flow control is reactive flow control. Reactive flow control is

the process by which out-of-phase disturbances are artificially introduced into the

boundary layer to cancel those disturbances already present, thus stabilizing the

flow and delaying transition. Some reactive controls include periodic

heating/cooling, and wall motion. However, this method of Laminar flow control

is complex and to date is more of a theoretical method.

The underlying principle of these techniques, as one expert puts it, is:



"The realization that transition is the eventual stage

in a process that involves amplification of disturbances
in the boundary layer" [1].

Prediction of boundary-layer transition is an area which requires reliable

methods and must be sensitive to any control parameter that alters the mean

flow. These parameters include the active, passive, and reactive flow controls

mentioned above.

1.1.3 Transition

The Transition process is composed of several physical processes as

described in figure 1.1 [1]. External disturbances are internalize through a

viscous process know as "receptivity" [2]. Some of these external disturbances

include freestream vorticity, surface roughness, vibrations and sound. Identifying

and defining the initial disturbance for a given problem is the bases for the

prediction of transition and creates an initial value problem. The initial

disturbance is a function of the type of flow in consideration as well as its

environment and therefore is not usually known [1].

The disturbances in the boundary layer eventually enter the critical layer

which then amplify and can be modeled by linear stability theory. The modes

responsible for the amplification of these disturbances in boundary layer flow are

Tollmein Schlichting (viscous) waves or T-S waves, Rayleigh (inflectional) waves

(i.e. instabilities due crossflow or high Mach numbers), and Gortler vortices for

curved streamlines [1].

Once the amplifications are large enough, nonlinearity sets in through

secondary and tertiary instabilities and the flow becomes "transitional" [1]. It

should be noted that the nonlinear portion of the flow is small compared to the

linear region and therefore can still often be approximated by linear stability
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theory for preliminary designs. One thing that must be avoided in all laminar flow

studies is the introduction of high levels of initial nonlinear disturbances, which

cause a bypass of the linear disturbance regime and yields an almost

instantaneous transition. An example of such a nonlinear transition is

attachment-line contamination, and is commonly found in swept wings due to the

high crossflow at the wing leading edge.

1.2 Previous Work

Laminar flow control began in the 1930's with studies which investigated

methods of Natural Laminar Flow control (NLF), specifically pressure gradient

flows. This research led to the development of the NACA6-series airfoils in the

1940's. Natural Laminar flow research was later halted in the 1950 by the

development of high speed jet engine aircraft. These jet aircraft reached

transonic/supersonic speeds requiring the wing to be swept to obtain lower local

mach numbers and maintain reasonable aircraft performance [3]. The effect of

sweeping the wing then introduces a three dimensional, crossflow, instability that

eliminates the ability to maintain laminar flow through current means. The sweep

back and highly favorable pressure gradient near the leading-edge of the wing

induces a boundary layer crossflow. The sweep and adverse pressure gradient

near the trailing edge likewise induces crossfiow instabilities on the trailing edge

portion of the wing. Unlike the more common "viscous" two dimensional Tollmein

Schlighting (TS) instabilities, which are damped when a favorable pressure

gradient is applied, the three dimensional crossflow "inflectional" instabilities are

amplified when such a favorable pressure gradient is applied [4].

Natural laminar flow control research would now be replaced by attempts

to actively control boundary-layer transition, more commonly known as Laminar

Flow Control (LFC). These types of controls are categorized as active flow



control which began with flow suction on swept wings. Work in this area peaked

in the 1960's with the flight test of the X-21A. The X-21A's work showed the

basic feasibility of extending LFC through active flow techniques at Reynolds

number as high as 30 x 106 [5].

Further development of the current research in LFC were delayed for a

period of about 10 years due to the lack of necessity for improving aircraft fuel

efficiency due to both the abundance of low cost fuel resource and the high cost

of designing such capabilities. It was not until the 1970's that interest in LFC

research was recaptured and has continued to the present day.

The need for higher fuel efficient aircraft has further forced aircraft

designers to look at fuel efficiency as there top requirement. A major factor

affecting fuel efficiency is aerodynamic drag. More specifically, turbulent skin

friction drag. Advancements in super computers and computing methods have

led to the analysis of the boundary-layer transition stability problem and the ability

to develop manufacturing processes to create the needed aircraft skin material to

include strength as well as smoothness. Therefore, laminar flow has become a

more realistic method of improving aircraft fuel efficiency.

Reducing the turbulent skin friction is done by extending the amount of

laminar flow over the aircraft. Until recently, most studies on laminar flow have

been in the subsonic flow region. Work done in this subsonic realm hasshown

that turbulent skin friction drag can contribute as much as 50% of the total aircraft

drag [6]. Studies on typical Supersonic Transports (SST) have shown the

potential increase in cruise Lift-to-drag ratio with increase laminar flow [7-8].

Other benefits of laminar flow at supersonic speeds include aerodynamic heating

reduction, which allows for an increase option of skin/structure material therefore,

decreasing the aircraft gross weight and increasing it's range/payload capability.



1.2 Current Work

A parametric study is being conducted as an effort to numerically predict

the extent of natural laminar flow (NLF) on finite swept wings at supersonic

speeds. This study is one aspect of a High Speed Research Program (HSRP) to

gain an understanding of the technical requirements for high-speed aircraft flight.

As mentioned previously, by extending laminar flow over the skin of an

aircraft, there is a significant decrease in the turbulent skin friction, which in turn

decreases the total drag force on the aircraft's body. Furthermore,extending

laminar flow at supersonic speeds will also significantly decrease the surface

temperatures allowing for a more optimum selection of skin material.

Therefore, by understanding the nature of laminar flow and the ability to

control laminar flow, the following benefits can be expected in future aircraft

designs:

1) Increase range

2) Increase payload

3) Decrease fuel requirement
4) Increase options for skin material
5) Decrease initial cost

6) Decrease operating cost

The parameters that are being addressed in this study are Reynolds

number, angle of attack,and leading-edge wing sweep. These parameters were

analyzed through the use of an advanced Computation Fluid Dynamics (CFD)

flow solver, specifically the Ames Research Center's Three Dimensional

Compressible Navier Stokes (CNS) flow solver [9]. From the CNS code,

pressure coefficients (Cp) are obtain for the various cases. These Cp's are then

.used to compute the boundary-layer profiles through the use of the "Kaups and

Cebeci" compressible two-dimensional boundary layer code (Wing) [10]. Finally



the boundary-layer parameters are processed into a three dimensional

compressible boundary layer stability code (COSAL)to predict transition [11].

The parametric study then consisted of four geometries which addressed

the effects of sweep, and three angle of attacks from zero to ten degrees to yield

a total of 12cases. The above process was substantially automated through a

procedure that was developed by the work conducted under this study. This

automation procedure then yields a three dimensional graphical measure of the

extent of laminar flow by predicting the transition location of laminar to turbulent

flow.



CHAPTER 2

GOVERNING EQUATIONS

2.1 Mean Flow

The physics of the flow in consideration can be described by the

fundamental equations governing viscous fluid flow. These fundamental

equations are based upon the universal laws of conservation of mass,

momentum, and energy. These conservation laws are used to formulate the

time-averaged, non dimensional Navier-Stokes equations, in Cartesian

coordinates (X,Y,Z) [9].

2.1.2 THIN - LAYER APPROXIMATION

Large amounts of CPU time are necessary to solve the time-averaged

three-dimensional Navier-Stokes equations. Particularly for flow about realistic

geometries. To alleviate some of this large (CPU) requirement a thin-layer

approximation is applied to the governing equations. The thin-layer

approximation is applicable to high Reynolds number flows where the boundary

layer is thin and assumes that the effects of viscosity are concentrated near the

rigid boundaries and only vary in the wall-normal direction. It should be noted

that the thin-layer approximation requires that the body surface be mapped to a

coordinate surface and that clustering be normal to this surface. The resulting

grid resolution usually has fine grid spacing in the normal body direction and

coarser spacing along the body. Therefore, the viscous terms in the normal body

direction are preserved and those viscous terms in the stream and spanwise

direction are neglected. This approximation yields a simplified version of the

Navier Stokes equation [9].

2.2 Boundary Layer Equations



To determine the boundary layer transition stability, the use of a boundary

code "Wing" was used. A conical flow approximation for the flow over a finite

swept wing is assumed and a polar coordinate system is used as shown in figure

2.1 [10] to simplify the computation. This assumption is valid for pressure isobars

along constant percent chord lines or along generators if the wing is of a

trapezoidal planform. It should be noted that this assumption is not valid near the

tip or root of the wing due to the shock waves created here.

2.3 LINEAR STABILITY EQUATIONS:

A Compressible Stability Analysis code (COSAL) is used to analyze the

stability of the three-dimensional boundary layer [11]. The three dimensional

viscous incompressible flow can be expressed by the nonlinear Navier Stokes

equations. The fluid motion is then decomposed into a steady flow and an

instantaneous perturbation where, U is the mean flow velocities in x,y,z.

Next, the perturbations are substituted into the linearized Navier Stokes

equations and the assumption of a "quasiparallel" flow is made. It should be

noted that a "quasiparallel" flow implies that the mean flow is only a function of

the body-normal coordinate "y" for a given point along the body. This assumption

is applicable to boundary-layer flows since, at high Reynolds numbers, the flow

gradient in the streamwise x-direction are much smaller than in the body normal

y-direction. The linear Navier Stokes equation then become separable PDE's

where by a normal mode solution is applicable and a disturbance level

measurement of the boundary layer flow called the "N-Factor" can be obtain to

determine transition. Transition is then predicted empirically at an N-factor of 8 to

10 based on previous studies in swept wings [4,24,25].
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CHAPTER 3

NUMERICAL METHODS

The finite difference schemes used in the Compressible Navier Stokes

(CNS) code to solve the mean flow governing equations is the implicit

approximation factorization algorithm in delta form by Beam and Warming [12].

The basic numerical algorithms used to solved the governing mean flow

equations have been taken from the Pulliam-Steger ARC3D computer code [13]

and applied to the Compressible Navier Stokes (CNS) code. This algorithm is

known as the Pulliam-Chaussee Diagonal ADI Algorithm. This scheme uses the

fourth-order-accurate smoothing operator on both the left- and right-hand sides.
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CHAPTER 4

COMPUTATIONAL GRID AND BOUNDARY CONDITIONS

4.1 Wing Grid Configurations

The computational grids used in this analysis were generated from an

algebraic surface grid generation code developed under this study. The airfoil

ordinates, required by the above surface grid code, were obtain from a code

called "sixseries" [15]. Sixseries produces the ordinates for airfoils of any

thickness, thickness distribution, or camber in the NACA 6- and 6a-series. These

ordinates are then redistributed using either the S3D [16] or VG [17] code. Once

the desired airfoil section is acquired and the surface grid is generated, the 3D

grid is then generated through the use of a hyperbolic volume grid generator

called "HYPGEN".

4.1.1 Surface Grid Generator

An algebraic surface grid generation code was developed in order to

create various wings geometries. This code generates single-element type

wings of various wing sweeps and taper ratios for a given airfoil shape. Appendix

A-1 contains a copy of the code along with several pre-processing codes and a

list of the procedure to obtain a surface grid. The surface grid generator was

designed to allow the user a quick method of creating the mentioned wing

surfaces. The following is a list of the inputs:

- Taper Ratio (optional)

- Aspect Ratio (optional)

- Leading Edge or Quarter chord sweep

- Number of spanwise points (cuts) on the wing

- Initial spacing in the spanwise direction

(tip chord spacing)

- Final spacing in the spanwise direction



(rootchord spacing)
- Airfoil ordinate input file obtained from the Wing

Surface Grid Creation procedure shown in appendix A-1.

It should be noted that the process necessary to obtain the above

mentioned airfoil ordinate input file requires a few steps. For a detail explanation

of the process to obtain the airfoil ordinate input file, refer to the procedure listed

in appendix A-1.

The surface grid generation code runs in the order of a few seconds on

the IRIS workstation. One feature of the code includes a check for negative

trailing edge sweep, which can be obtain when certain combination of taper ratio,

aspect ratio, and leading edge sweep are chosen. The reason for this check is

due the fact that the boundary-layer code currently being used in the transition

analysis can not analysis swept forward wing edges.

Finally, it is noted that the algebraic surface grid generator uses the

vinokur stretching routine to cluster points along the spanwise directions at the

wing's wake, root, and tip sections [17a].

4.1.2 Volume Grid Generator

The three dimensional computational grids for the various wing geometries

being studied are generated using a hyperbolic three dimensional grid generation

code HYPGEN [14]. This code generate a 3D volume grid over the above

generated single-block surface grids. HYPGEN accomplishes this my solving the

three-dimensional hyperbolic grid generation equations consisting of two

orthogonality relations and one cell volume check.

The cell volume check is one of two grid quality checks conducted by

HYPGEN after a grid is generated. The cell volume check is a cell volume

computation using tetrahedron decomposition, and will check the grid for any



types of distortions. The second test is a Jacobian computation and uses a finite

volume algorithm, specifically the OVERFLOW flow solvers algorithm [17b]. If a

grid passes the two test, it will run through the flow solver. Although, if any cell in

the grid passes the second test but not the first test, its accuracy may be effected

if those regions.

4.2 Boundary Conditions

The solid wall conditions are specified in CNS as no-slip adiabatic wall.

The outer boundary or far field flow variables are set to free stream flow

conditions. A symmetry plane is used at the wing's root chord section which

eliminates wall effects or the fuselage effect that could lead to leading-edge flow

contamination also known as spanwise turbulent contamination. This

phenomenon was first discovered by Gray [18] in flight at the Royal Aircraft

Establishment (RAE)in 1951.



CHAPTER 5

AUTOMATED STABILITY ANALYSIS

In order to conduct the following parametric study it was necessary to

substantially automate the analysis process, due to the extensive amount of

man-hours required to obtain a transition prediction. Once this portion of the

study was completed it was necessary to validate the Automated Stability

Analysis. The F-16xl ship1 Flight test was used as a validation case.

The automated stability analysis is illustrated in Figure 5.1. The actual

automation begins after the Pressure coefficients (Cp) are obtained from the

mean flow solution for each span station. Once the Cp's are obtained they are

fed into the boundary-layer code (WING)which computes the boundary-layer

profiles and other parameters. Now the boundary-layer outputs are fed into the

Compressible Stability Analysis code (COSAL)to measure the disturbances in

the boundary layer. Note that for each span station the stability code must run

for a spectrum of frequency between 0 and 40,000 Hz to determine the most

unstable condition. The user time required for an average COSAL run is

approximately 30 seconds and since the frequency scan requires 22 runs for

each of the 8 selected span stations on the wing, a total average time of 1.5

hours. Note that the actual turn around time for a typical job is about 3 hours due

to the added time to run the boundary layer code and other post processing

codes.



CHAPTER 6

RESULTS AND DISCUSSION

6.1 Stability Automation Validation

Due to the extensive amount of repetitive calculations needed to obtain a

transition front solution as mention earlier in Chapter 6, this process was

automated and therefore needed to be validated. The validation case used was

the F-16XL wing transition front. The results of the F-16XL wing transition front,

using this developed automated stability process, compared well with the results

previously obtained manually. The advantage of this automated process are

that the amount of users interactive man hours has dropped from hours to a

matter of minutes, and the overall turn around time for a transition prediction has

dropped from days to a matter of hours.

6.2 Reynolds Number Effects

Before a full parametric study was to be conducted, it was necessary to

establish a baseline case that had a reasonable region of laminar flow. This was

necessary so that the effects of changing the various parameters could be

distinguished. To obtain a fair amount of laminar flow and maintain the

supersonic cruise conditions of a free stream mach number equal to 1.5 and an

altitude of 40 to 50 thousand feet, the Reynolds number was varied by changing

the root chord length. The results showed that the extent of laminar flow was

increased as the local Reynolds number was decreased. A root chord of 5 feet

was selected for the Baseline case and yields laminar flow up to approximately

20% chord figure 6.1.

6.3 Angle of Attack Effects



Effects of angle of attack study on the extent of laminar flow has shown

that Laminar flow is increased with increase angle of attacks. This is illustrated in

figure 6.2 by the Transition fronts of the Baseline, 45 degree swept, wing for

angle of attacks of 0, 5, and 10 degrees. The white region signifies the portion of

the wing where laminar flow is no longer predicted. The color contours

represent the measure of the disturbance levels (N-factors) in the Boundary

Layer and range from 0 to 10. The disturbance level of 8 was selected as the

critical transition N-factor based on previous swept wing studies [3]. It should be

noted that the transition results near the tip and root of the wing are not valid as

mentioned earlier, due to the conical flow assumption in the boundary-layer

program which are fed into the transition predicting Compressible boundary-layer

Stability code (CQSAL). To avoid the tip and root regions of the wing, the

analysis was only performed on the grey area shown in figure 6.3. Furthermore,

to simplify the discussion of the results, only the mid span of the wing will be

mentioned in detail.

In order to understand the transition results, a flow trace of the different

angle of attack cases is shown in figure 6.4. These flow traces reveal a decrease

in crossflow near the leading edge of the wing as the angle of attack increases to

10 degrees. In order to better see how the flow trace is affected by the different

angle of attacks, a plotof the leading edge flow at 48% span is shown in figure

6.5. It should be noted that the black line indicates the leading edge and the 48%

span is on the right hand side. The green flow trace line indicates the flow trace

at the leading edge point. The red flow trace lines indicate the flow over the

upper wing surface and the blue indicate the flow trace on the lower wing

surface. From this plot it is evident that the attachment point moves below the

leading edge on to the lower surface of the wing.

From a previous parametric study on the leading edge attachment line of



the F-16XL [16] it was found that the maximum crossflow velocity at a given wing

location decreased as the angle of attack increased due to the rotation of the

attachment point underneath the leading edge. Although, the results of this study

reveal a different trend and are shown in the following boundary-layer profile

results. Unlike the expected upstream movement of transition as mentioned in

the F-16XL attachment line study, the transition results of this study show that

transition moves downstream (figure 6.2).

In order to study the flow more thoroughly, boundary-layer profile plots

were made for the three angre of attack cases at approximately mid span (48%

span). Since transition is found to occur at an x/c between 10 and 21%,

crossflow boundary-layer profiles were plotted from x/c of 0 to 21% as shown in

figure 6.6. Results of the crossflow profiles reveal that the crossflow velocities

are larger for the higher angle of attack cases near the leading edge and then it is

found that the higher angle of attack case's crossflow damp fall below the lower

angle of attack case farther down stream. In order to represent this trend a plot

of the maximum crossfiow for the first 21% chord at the different angle of attacks

is shown in figure 6.7. This figure is a plot of the maximum crossflow

"(W/Uinf)max" versus streamwise location "X/C" for the angle of attacks of 0, 5,

and 10 degrees. This plot shows that the maximum crossflows are larger as the

angle of attack is increased to approximately 4% chord. After 4% the crossflows

for the 5 degree angle of attack case fall below the 0 angle of attack case and

level off at approximately -0.045 after 15% chord. The 0 angle of attack case

slowly falls after 4% chord and levels off at approximately -0.06. The 10degree

angle of attack case falls below the 0 degree angle of attack case at

approximately 8% chord and continues to fall below the 5 degree angle of attack

case at approximately 15% chord and appears to begin leveling off at 21% chord

at a crossfiow value of 0.04.



Streamwise boundary-layer profiles were also plotted (figure 6.8). The

results of the streamwise boundary profiles show that the velocity components in

the streamwise direction increase significantly as the angle of attack increases

for any given x/c values up to 21 percent. This is attributed to the increase

streamwise curvature that the flow experiences, which requires the flow over the

top of the wing to increase its streamwise velocity component to account for the

pressure differences across the wing. It should be noted that the streamwise

component of the velocity profiles are not considered in the stability of the

boundary-layer since they influence the Tollmein Schilichting instabilities and the

current calculation is for crossflow instabilities.

Next, Stability curves of the transition results at approximately 48% Span,

are shown in figure 6.9. This figure is a plot of x/c vs. frequency for the angle of

attack study at a the critical boundary-layer disturbance level (N-factor) of 8.

Basically, this plot shows the most unstable frequencies that yield the

disturbance levels of 8, and where these disturbances first occur. For example,

at the angle of attack case of 0 degrees, the curve indicates that the most

unstable frequencies which yields the earliest transition is approximately 14000

Hz and occurs at the x/c value of approximately 12 percent. Therefore, it is

revealed that the transition front moves back as the wing's angle of attack is

increased to 10 degrees. It should also be noted that the critical frequency at

which transition is predicted in both the 0 and 10 degree case is approximately

14000 Hz, and for the angle of attack case of 5 degrees it is approximately 12000

Hz which means that the disturbance in the flow are higher for a lower

disturbance frequency for the 5 degree angleof attack case.

6.4 Sweep Effects



In addition to investigating the effects of angle of attack, the effects of

sweep were also studied. It was necessary to keep the wing's aspect ratio

constant so that the comparison in sweep would not be misinterpreted by other

changes in the wing's surface area or local chord. It was also necessary to avoid

sweeping the wing into the mach cone, which would cause shock waves and

distort the flow. Due to the above requirements, it was necessary to shear the

baseline clipped delta wing to obtain the different sweeps and maintain the same

aspect ratio as well as local chord lengths. To obtain sweeps of 45 degrees to 70

degrees, three new geometries were created as shown in figure 6.10. This led to

two sets of sweep comparisons. The first set compared the 45 and 60 degree

sweeps with aspect ratio's of 1.45. The second set compared the 60 and 70

degree sweeps with an aspect ratio's of 1.0. The lower AR wings of 1.0were

created to allow the analysis of the 70 degree swept wing, which would avoid

sweeping into a shock wave created by the mach cone at the freestream mach

number of 1.5.

The first set of sweep transition front results compare the 45 and the 60

degree sweeps at an AR of 1.45 and are shown in figure 6.11. It should be noted

that all sweep comparisons were conducted at an angle of attack of 0 degrees.

The results of this first set show that the transition in the center of the wing

occurs earlier for the 60 degree sweep then the 45 degree sweep and

substantially earlier near the wing tip. From the flow traces shown in figure 6.12,

it is apparent that the 60 degree swept wing experiences a larger crossflow near

the leading edge of the wing. It should also be noted that the 60 degree swept

wing appears to have a flow separation occurring near the tip trailing edge of the

wing.

Again the analysis of the 48% span is used to show a more detail

comparison. The resultsof the crossflow profiles (figure 6.13) show that as the



wing is swept back to 60 degrees, the crossflow is substantially increased for all

streamwise station up to 20 percent chord. In order to represent this trend a plot

of the maximum crossflow for the first 21% chord at the different angle of attacks

is shown in figure 6.14. This figure is a plot of the maximum crossflow

"(W/Uinf)max" versus streamwise location "X/C" for the for the first set of sweeps.

This plot shows that the maximum crossflow is at first slightly larger for the 45

degree sweep at 1% chord and then drop below the 60 degree sweep at 3%

chord. The max crossflow for the 45 degree case then levels off at about 0.06

W/Uinf after approximately 15% chord. The 60 degree sweep's maximum

crossflow velocities are larger after 2% chord and continue a small fluctuation at

a value of about 0.07 W/Uinf after 10% chord.

The results of the streamwise flow profiles (figure 6.15) show that the

streamwise velocity component for the 60 degree sweep maintains about a 5%

larger edge velocity. Although, within the boundary layer the profile are similar.

As noted earlier the streamwise velocities are not used in the boundary-layer

stability analysis and from the results are indeed not a crucial part of the

transition affects due to sweep.

Next, Stability curves of the transition results for the first set of sweep

analysis at 48% span are shown in figure 6.16. This is the same type of plot as

the one discussed in the angle of attack study earlier. The results show that

transition occurs at approximately an x/c of 12 percent and frequency of 14,000

Hz for the 45 degree sweep. For the 60 degree sweep transition occurs at an x/c

of approximately 10 percent and frequency of approximately 20,000 Hz.

Therefore, transition is move forward two percent chord when the wing

is swept from 45 to 60 degrees.

The transition results of the second sweep comparison show a delay in the

transition front as the wing is swept from 60 to 70 degrees (figure 6.17). As was



expected for the higher swept case there exists a larger crossflow, as shown in

the flow trace of figure 6.18. Furthermore, the flow trace of the 70 swept wing

indicates that a flow separation may be occurring near the trailing edge tip

section of the wing. Unlike the previous 60 degree swept wing were the

separation occurred across the wing tip (figure 6.14), the separation of the 70

degree swept wing seems to move away from the wing tip and contaminate more

of the wing as shown in figure 6.18.

Comparison of the 48% span transition trends and boundary layer profiles

of this second sweep comparison will now be discussed. The crossflow velocity

profiles show that the 70 degree swept case contains higher crossflow velocities

then the 60 degree swept geometries (figure 6.19) after 5 percent chord. The

maximum crossflow for each streamwise station (figure 6.20) show that initially

the 60 degree sweep case are larger for the first 5 percent chord, yet they are

decreasing while the 70 degree sweep case maximum crossflow are increasing.

After 5 percent chord the 60 degree sweep case continues to decease its

maximum crossfiow velocities until it reaches a average value of about -0.065

between 15 and 21 percent chord. The 70 degree case continues to increase to a

value of about -.085 at 21 percent chord. The streamwise velocity profiles (figure

6.21 ) show that no significant change occurs as the wing is swept back to 70

degrees.

Finally, the results of the stability curve for this second set of sweeps at

48% span are shown in figure 6.22. These results (figure 6.22) show that

transition occurs at approximately an x/c of 13 percent and frequency of 18,000

Hz for the 60 degree sweep. For the 70 degree sweep transition occurs at an x/c

of approximately 25 percent and frequency of approximately 14,000 Hz.

Therefore, transition is move back about 12 percent chord when the wing is

swept from 60 to 70 degrees.



6.4 Grid Refinement

Now that the above results have been obtained, it was necessary to

validate that the result were grid independent. This required making sure that the

results did not change with increased grid resolution. Results of this portion of

the study are not yet obtained. This effort is on going.



CHAPTER 7

CONCLUSIONS

In the future, a leading-edgeshape study will be conducted in the hopes of

finding the effects of bluntness at supersonic speeds with respect to the extent of

laminar flow.

The result of the angle of attack study revealed that the amount of

laminar flow is increased as the angle of attack is increased. These results are

not yet understood and are be studied further.

The results of the first set of sweeps, 45 to 60 degrees, show that

transition occurs earlier asthe wing is swept back, therefore decreasing the

amount of laminar flow due to the higher crossflows.

The results of the second set of sweeps at 48% span reveal that the

transition is actually delayed therefore increasing the amount of laminar flow by

twice the amount rather then decreasing the amount of laminar flow as would be

expected due to the highercrossflows at the higher sweep. These result is not

yet know and is be studied.

Finally, investigation of the numerical methods being applied in this

study have led to the following recommendations. It was found that the two

dimensional boundary layer code uses a conical flow assumption that is not truly

valid for swept wings and should be replaced with a three dimensional boundary

layer code. Furthermore, it is recommended that future research directly use

Navier Stokes in place of the Boundary Layer solutions.
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